in

Véc tơ trong không gian, trắc nghiệm toán 11

Véc tơ trong không gian, trắc nghiệm toán 11

Câu 1

Cho  \[ABCD.{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\]là hình hộp, với K là trung điểm CC1. Tìm khẳng định đúng trong các khẳng định sau:

[A]. \[\overrightarrow{AK}=\overrightarrow{AB}+\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{A{{A}_{1}}}\]

[B].\[\overrightarrow{AK}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{A{{A}_{1}}}\]

[C].  \[\overrightarrow{AK}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{{A}_{1}}}\]

[D].\[\overrightarrow{AK}=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{A{{A}_{1}}}\]

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Có \[\overrightarrow{AK}=\overrightarrow{AC}+\overrightarrow{CK}=(\overrightarrow{AB}+\overrightarrow{AD})+\dfrac{1}{2}\overrightarrow{A{{A}_{1}}}=\overrightarrow{AB}+\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{A{{A}_{1}}}\]

Chọn A

[Ẩn HD]

Câu 2

Cho hình hộp \[ABCD.{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\] với \[M=C{{D}_{1}}\cap {{C}_{1}}D\]. Khi đó:

[A]. \[\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{A{{A}_{1}}}\]

[B].\[\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{A{{A}_{1}}}\]

[C]. \[\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{A{{A}_{1}}}\]

[D].\[\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}+\overrightarrow{A{{A}_{1}}}\]

Hướng dẫn

( hính vẽ câu 1)

Ta có: \[\overrightarrow{AM}=\overrightarrow{AD}+\overrightarrow{DM}=\overrightarrow{AD}+\overrightarrow{D{{C}_{1}}}=AD+\dfrac{1}{2}(\overrightarrow{DC}+\overrightarrow{\text{D}{{\text{D}}_{1}}})=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{A{{A}_{1}}}\]

Chọn B

[Ẩn HD]

Câu 3

Cho hình hộp \[ABCD.{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\] . Khi đó: tổng 3 góc \[(\overrightarrow{{{D}_{1}}{{A}_{1}}},\overrightarrow{C{{C}_{1}}})+(\overrightarrow{{{C}_{1}}B},\overrightarrow{D{{D}_{1}}})+(\overrightarrow{D{{C}_{1}}},\overrightarrow{{{A}_{1}}B})\]là:

[A]. 1800

[B]. 2900                                       

[C].3600

[D]. 3150

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Ta có:

\[\begin{align}
& (\overrightarrow{{{D}_{1}}{{A}_{1}}},\overrightarrow{C{{C}_{1}}})={{90}^{0}} \\
& (\overrightarrow{{{C}_{1}}B},\overrightarrow{D{{D}_{1}}})=(\overrightarrow{{{C}_{1}}B},\overrightarrow{C{{C}_{1}}})={{135}^{0}} \\
& (\overrightarrow{D{{C}_{1}}},\overrightarrow{{{A}_{1}}B})=(\overrightarrow{D{{C}_{1}}},\overrightarrow{{{D}_{1}}C})={{90}^{0}} \\
\end{align}\]

\[\Rightarrow (\overrightarrow{{{D}_{1}}{{A}_{1}}},\overrightarrow{C{{C}_{1}}})+(\overrightarrow{{{C}_{1}}B},\overrightarrow{D{{D}_{1}}})+(\overrightarrow{D{{C}_{1}}},\overrightarrow{{{A}_{1}}B})={{90}^{0}}+{{135}^{0}}+{{90}^{0}}={{315}^{0}}\]

Chọn D

[Ẩn HD]

Câu 4

Cho hình lập phương \[ABCD.{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\], đặt \[\alpha =(\overrightarrow{AC},\overrightarrow{D{{C}_{1}}});\,\,\,\beta =(\overrightarrow{D{{A}_{1}}},\overrightarrow{B{{B}_{1}}});\,\,\gamma =(\overrightarrow{A{{A}_{1}}},\overrightarrow{{{C}_{1}}C})\] Khi đó: là\[\alpha +\,\,\beta +\,\,\gamma \]:

[A]. 3600

[B]. 3750                                 

[C]. 3150

[D]. 2750

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

\[\alpha =(\overrightarrow{AC},\overrightarrow{D{{C}_{1}}})=(\overrightarrow{AC},\overrightarrow{A{{B}_{1}}})={{60}^{0}}\]

\[\beta =(\overrightarrow{D{{A}_{1}}},\overrightarrow{B{{B}_{1}}})=(\overrightarrow{D{{A}_{1}}},\overrightarrow{{{A}_{1}}A})={{135}^{0}}\]

\[\gamma =(\overrightarrow{A{{A}_{1}}},\overrightarrow{{{C}_{1}}C})=(\overrightarrow{A{{A}_{1}}},\overrightarrow{{{A}_{1}}A})={{180}^{0}}\]

\[\Rightarrow \alpha +\beta +\gamma ={{60}^{0}}+{{135}^{0}}+{{180}^{0}}={{375}^{0}}\]

Chọn  B

[Ẩn HD]

Câu 5

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, AB=6; AD=4;\[\overrightarrow{AB}.\overrightarrow{AD}=12\] . Tính \[{{(\overrightarrow{SC}.-\overrightarrow{SA})}^{2}}.\]

[A]. 76

[B]. 28                                      

[C]. 52

[D]. 40

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

\[{{(\overrightarrow{SC}.-\overrightarrow{SA})}^{2}}.={{\overrightarrow{AC}}^{2}}=(\overrightarrow{AB}+\overrightarrow{AD})={{\overrightarrow{AB}}^{2}}+{{\overrightarrow{AD}}^{2}}+2\overrightarrow{AB}.\overrightarrow{AD}\]

\[={{6}^{2}}+{{4}^{2}}+2(-12)=28\]

Chọn B

[Ẩn HD]

Câu 6

Chỉ ra mệnh đề đúng trong các mệnh đề sau:

[A]. Ba vectơ đồng phẳng là 3 vec tơ cùng nằm trong một mặt phẳng

[B]. Ba vectơ \[\overrightarrow{a},\,\overrightarrow{b},\,\overrightarrow{c}\] đồng phẳng thì có \[\overrightarrow{c}=m\overrightarrow{a}+n\,\overrightarrow{b},\,\]với m, n là các số duy nhất

[C]. Ba vectơ  đồng phẳng khi có \[\overrightarrow{d}=m\overrightarrow{a}+n\,\overrightarrow{b}+p\overrightarrow{c}\,\]với \[\overrightarrow{d}\] là vec tơ bất kỳ

[D]. Cả 3 mệnh đề trên đều sai

Hướng dẫn

-Phương án A:  sai vi chỉ cần giá của chúng song song hoặc nằm trên một mặt phẳng nào đó

Phương án B: Sai \[\overrightarrow{a},\,\,\overrightarrow{b}\] phải không cùng phương.

Phương án C sai

Vậy chọn D

[Ẩn HD]

Câu 7

Cho hình tứ diện ABCD, trọng tâm G. Mệnh đề nào sau đây sai?

[A]. \[\overrightarrow{OG}=\dfrac{1}{4}(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC})\,\,\]

[B]. \[\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\]

[C]. \[\overrightarrow{AG}=\dfrac{2}{3}(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD})\]

[D]. \[\overrightarrow{AG}=\dfrac{1}{4}(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD})\]

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Gọi M, N lần lượt là trung điểm của AB, CD

\[\Rightarrow \] G là trung điểm của MN \[\Rightarrow \overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{0}\]

\[\Leftrightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\] \[\Rightarrow \]B đúng

Ta có:         \[\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{OG}+\overrightarrow{GA}+\overrightarrow{OG}+\overrightarrow{GB}+\overrightarrow{OG}+\overrightarrow{GC}+\overrightarrow{OG}+\overrightarrow{GD}\]

\[=4\overrightarrow{OG}+(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD})=4\overrightarrow{OG}\] \[\Rightarrow \]A đúng

Khi O trùng A thì D đúng vậy đáp án là [C].

[Ẩn HD]

Câu 8

Cho ba vectơ \[\overrightarrow{a},\,\overrightarrow{b},\,\overrightarrow{c}\] không đồng phẳng xét các vectơ\[\overrightarrow{x}=2\overrightarrow{a}-\overrightarrow{b};\,\overrightarrow{y}=-4\overrightarrow{a}+2\overrightarrow{b};\,\,\overrightarrow{z}=-3\overrightarrow{a}-2\overrightarrow{c}\] Chọn mênh đề đúng trong các mệnh đề sau:

[A].Hai vec tơ\[\overrightarrow{y},\,\overleftarrow{z}\] cùng phương

[B]. Hai vec tơ\[\overrightarrow{x},\,\overleftarrow{y}\] cùng phương

[C].Hai vec tơ\[\overrightarrow{x},\,\overleftarrow{z}\] cùng phương

[D].Hai vec tơ\[\overrightarrow{x},\overrightarrow{y},\,\overleftarrow{z}\] đồng phẳng

Hướng dẫn

Ta thấy \[\overrightarrow{y}=-2\overrightarrow{x}\] nên \[\overrightarrow{x},\,\overrightarrow{y}\]  cùng phương.

Chọn B

[Ẩn HD]

Câu 9

Cho hình lập phương \[ABCD.{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\], Tìm giá trị của k thích hợp để\[\overrightarrow{AB}\,\,+\overrightarrow{{{B}_{1}}{{C}_{1}}}+\overrightarrow{D{{D}_{1}}}=k\overrightarrow{A{{C}_{1}}})\]

[A].k=4

[B]. k=1

[C]. k=0

[D]. k=2

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Có \[\underrightarrow{AB}+\overrightarrow{{{B}_{1}}{{C}_{1}}}+\overrightarrow{\text{D}{{\text{D}}_{1}}}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{C{{C}_{1}}}=\overrightarrow{A{{C}_{1}}}\Rightarrow k=1\]

Chọn B

[Ẩn HD]

Câu 10

Cho hình lăng trụ tam giác \[ABC.{{A}_{1}}{{B}_{1}}{{C}_{1}}\]. Đặt \[\overrightarrow{\text{A}{{\text{A}}_{1}}}=a;\,\,\overrightarrow{\text{AB}}=b;\,\overrightarrow{\text{AC}}=c;\,\,\overrightarrow{B{{C}_{1}}}=d\] trong các đẳng thức sau đẳng thức nào đúng.

[A].\[\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d}=\overrightarrow{0}\]

[B]. \[\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{d}\]

[C]. \[\overrightarrow{b}-\overrightarrow{c}+\overrightarrow{d}=\overrightarrow{0}\]

[D]. \[\overrightarrow{a}=\overrightarrow{b}+\overrightarrow{c}\]   \[\]

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Ta có:  \[\overrightarrow{b}-\overrightarrow{c}+\overrightarrow{d}=\overrightarrow{AB}-\overrightarrow{AC}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}\]

Chọn  C

[Ẩn HD]

Câu 11

Trong các khẳng định sau đây, khẳng định nào sai?

[A].Nếu giá của ba vectơ cắt nhau từng đôi một thì 3 vectơ đồng phẳng

[B].Nếu ba vectơ \[\overrightarrow{a},\,\overrightarrow{b},\,\overrightarrow{c}\]có một vec tơ \[\overrightarrow{0}\]  thì ba vectơ đồng phẳng

[C].Nếu giá của ba vectơ \[\overrightarrow{a},\,\overrightarrow{b},\,\overrightarrow{c}\]   cùng song song với một mật phẳng thì ba vec tơ đó đồng phẳng

[D].Nếu trong ba vectơ \[\overrightarrow{a},\,\overrightarrow{b},\,\overrightarrow{c}\] có ha vec tơ cùng phương thì ba vectơ đó đồng phẳng

Hướng dẫn

Chọn  A

[Ẩn HD]

Câu 12

Cho  \[ABCD.{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\]là hình hộp, trong các khẳng định sau khẳng định sai:

[A].\[\overrightarrow{A{{C}_{1}}}+\overrightarrow{{{A}_{1}}C}=2\overrightarrow{AC}\]

[B]. \[\overrightarrow{A{{C}_{1}}}+\overrightarrow{C{{A}_{1}}}+2\overrightarrow{C{{C}_{1}}}=\overrightarrow{0}\]

[C]. \[\overrightarrow{A{{C}_{1}}}+\overrightarrow{{{A}_{1}}C}=\overrightarrow{A{{A}_{1}}}\]

[D]. \[\overrightarrow{C{{A}_{1}}}+\overrightarrow{AC}=\overrightarrow{C{{C}_{1}}}\]

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Ta có:

\[\overrightarrow{A{{C}_{1}}}+\overrightarrow{{{A}_{1}}C}=\overrightarrow{\text{A}{{\text{A}}_{1}}}\] \[\overrightarrow{A{{C}_{1}}}=\overrightarrow{\text{A}{{\text{A}}_{1}}}-\overrightarrow{A{{C}_{1}}}\Leftrightarrow \overrightarrow{{{A}_{1}}C}=\overrightarrow{{{C}_{1}}{{A}_{1}}}\]

Chọn  C

[Ẩn HD]

Câu 13

Hãy chọn mệnh đề đúng trong các mệnh đề sau:

[A].Tứ giác ABCD là hình bình hành nếu \[\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DA}=\overrightarrow{0}\]

[B]. Tứ giác ABCD là hình bình hành nếu \[\overrightarrow{AB}=\overrightarrow{CD}\]

[C]. Cho hình chóp S.ABCD, nếu có \[\overrightarrow{SB}+\overrightarrow{SD}=\overrightarrow{SA}+\overrightarrow{SC}\] thì tứ giác ABCD là hình bình hành

[D].Tứ giác ABCD là hình bình hành nếu \[\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AD}\]

Hướng dẫn

Chọn  C

[Ẩn HD]

Câu 14

Cho hình hộp \[ABCD.{{A}^{‘}}{{B}^{‘}}{{C}^{‘}}{{D}^{‘}}\] Gọi I, K lần lượt là tâm của các hình bình hành\[AB{{B}^{‘}}{{A}^{‘}}\] và \[BC{{C}^{‘}}{{B}^{‘}}\] . Khẳng định nào sau đây là sai?

[A].Bốn điểm I, K, C, A đồng phẳng

[B].\[\overrightarrow{IK}=\dfrac{1}{2}\overrightarrow{AC}=\dfrac{1}{2}\overrightarrow{{{A}^{‘}}{{C}^{‘}}}\]

[C].Bà vec tơ  \[\overrightarrow{BD},\overrightarrow{IK},\,\overrightarrow{B’C’}\] không đồng phẳng

[D].\[\overrightarrow{BD}+2\overrightarrow{IK}=2\overrightarrow{BC}\]

Hướng dẫn

Chọn  C

[Ẩn HD]

Câu 15

Cho tứ diện ABCD. Trên các cạnh AC, BD lần lượt lấy M, Nsao cho AM=3MD; BN=3NC. Gọi P,Q lần lượt là trung điểm của AD, BC. Trong các khẳng định  sau, khẳng định nào sai?

[A].Các vec tơ\[\overrightarrow{BD},\,\,\overrightarrow{AC},\,\overrightarrow{MN}\]  không đồng phẳng

[B]. Các vec tơ \[\overrightarrow{MN},\,\,\overrightarrow{DC},\,\overrightarrow{PQ}\]   đồng phẳng

[C]. Các vec tơ \[\overrightarrow{AB},\,\,\overrightarrow{DC},\,\overrightarrow{PQ}\]  đồng phẳng

[D]. Các vec tơ \[\overrightarrow{AC},\,\,\overrightarrow{DC},\,\overrightarrow{MN}\]   đồng phẳng

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Lấy điểm E trên cạnh AC sao cho AE=3EC, lấy F trên BD sao cho BF=3FD

\[\left\{ \begin{align}
& NE//AB,NE=\dfrac{1}{3}AB \\
& MF//AB,MF=\dfrac{1}{3}AB \\
\end{align} \right.\]\[\Rightarrow NE//MF,NE//MF\]

\[\Rightarrow \] NEMF là hình bình hành và 3 vec tơ \[\overrightarrow{BA},\,\overrightarrow{DC},\,\overrightarrow{MN}\] có giá song song hoặc nằm trên mặt phẳng (MFNE) \[\Rightarrow \]\[\overrightarrow{BA},\,\overrightarrow{DC},\,\overrightarrow{MN}\] đồng phẳng

\[\Rightarrow \]\[\overrightarrow{BD},\,\overrightarrow{AC},\,\overrightarrow{MN}\]  không đồng phẳng.

Chon  A

[Ẩn HD]

Câu 16

Cho tứ diện ABCD có các cạnh đầu bằng a. Hãy chỉ ra mệnh đề đúng trong các mệnh đề sau:

[A].\[\overrightarrow{AD}+\overrightarrow{CD}+\overrightarrow{BC}+\overrightarrow{DA}=\overrightarrow{0}\]

[B].\[\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{{{a}^{2}}\sqrt{3}}{2}\]

[C].\[\overrightarrow{AC}.\overrightarrow{AD}=\overrightarrow{AC}.\overrightarrow{CD}\]

[D].\[\overrightarrow{AD}.\overrightarrow{CD}=0\]

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Phương án A:

\[\overrightarrow{\text{AD}}+\overrightarrow{CD}+\overrightarrow{BC}+\overrightarrow{DA}=(\overrightarrow{AD}+\overrightarrow{DA})+(\overrightarrow{BC}+\overrightarrow{CD})=\overrightarrow{0}+\overrightarrow{BD}\ne \overrightarrow{0}\Rightarrow \,A\] sai

Phương án B:\[\overrightarrow{AB}.\overrightarrow{AC}=a.a.c\text{os6}{{\text{0}}^{0}}\text{=}{{\dfrac{a}{2}}^{2}}\Rightarrow B\] sai

Phương án B \[\overrightarrow{AC}.\overrightarrow{AD}=\overrightarrow{AC}.\overrightarrow{CD}\Leftrightarrow \overrightarrow{AC}(\overrightarrow{AD}+\overrightarrow{DC})=0\Leftrightarrow {{\overrightarrow{AC}}^{2}}=0\Rightarrow C\] sai

Chọn  D

[Ẩn HD]

Câu 17

Cho hình lập phương \[ABCD.{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\] . Gọi M là trung điểm của AD.Chọn khẳng định đúng:

[A].\[\overrightarrow{{{B}_{1}}M}=\overrightarrow{{{B}_{1}}B}+\overrightarrow{{{B}_{1}}A{}_{1}}+\overrightarrow{{{B}_{1}}{{C}_{1}}}\]

[B]. \[\overrightarrow{{{C}_{1}}M}=\overrightarrow{{{C}_{1}}C}+\overrightarrow{{{C}_{1}}D{}_{1}}+\dfrac{1}{2}\overrightarrow{{{C}_{1}}{{B}_{1}}}\]

[C].\[\overrightarrow{{{C}_{1}}M}=\overrightarrow{{{C}_{1}}C}+\dfrac{1}{2}\overrightarrow{{{C}_{1}}D{}_{1}}+\dfrac{1}{2}\overrightarrow{{{C}_{1}}{{B}_{1}}}\]

[D]. \[\overrightarrow{B{{B}_{1}}}+\overrightarrow{{{B}_{1}}{{A}_{1}}}+\overrightarrow{{{B}_{1}}C{}_{1}}=2\overrightarrow{{{B}_{1}}D}\]

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Ta có \[\overrightarrow{{{C}_{1}}M}=\overrightarrow{{{C}_{1}}{{D}_{1}}}+\overrightarrow{{{\text{D}}_{1}}\text{D}}+\overrightarrow{DM}=\overrightarrow{{{C}_{1}}{{D}_{1}}}+\overrightarrow{{{C}_{1}}C}+\dfrac{1}{2}\overrightarrow{{{C}_{1}}{{B}_{1}}}\]

Chọn B

[Ẩn HD]

Câu 18

Cho tứ diện ABCD và điểm G thỏa \[\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\]  ( G là trọng tâm của tứ diện). Gọi O là giao điểm của GA và mặt phẳng  (BCD) . Trong các khẳng định sau, khẳng định nào sai?

[A].\[\overrightarrow{GA}=-2\overrightarrow{OG}\]

[B]. \[\overrightarrow{GA}=4\overrightarrow{OG}\]

[C]. \[\overrightarrow{GA}=3\overrightarrow{OG}\]

[D]. \[\overrightarrow{GA}=2\overrightarrow{OG}\]

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Gọi M, N là trung điểm của BC, AD

\[\Rightarrow \] G là trung điểm MN. Gọi H là hình chiếu của N lên MD \[\Rightarrow \] NH là  đường trung bình của \[\Delta AOD\]và OG là đường trung bình của \[\Delta MNH\]

\[\begin{align}
& \Rightarrow OG=\dfrac{1}{2}NH=\dfrac{1}{2}.\dfrac{1}{2}AO\Rightarrow OG=\dfrac{1}{2}NH=\dfrac{1}{4}.AO \\
& hay\,\,\overrightarrow{GA}=3\overrightarrow{OG} \\
\end{align}\]

Chọn C

[Ẩn HD]

Câu 19

Cho tứ diện ABCD. Gọi M, Nlaafn lượt là trung điểm của AD, BC. Trong ccs khẳng định sau, khẳng định nào sai?

[A].Các vec tơ\[\overrightarrow{AB},\,\,\overrightarrow{DC},\,\overrightarrow{MN}\]  đồng phẳng

[B]. Các vec tơ \[\overrightarrow{MN},\,\,\overrightarrow{AB},\,\overrightarrow{AC}\]  không  đồng phẳng

[C]. Các vec tơ \[\overrightarrow{AN},\,\,\overrightarrow{CM},\,\overrightarrow{MN}\]  đồng phẳng

[D]. Các vec tơ \[\overrightarrow{AC},\,\,\overrightarrow{BD},\,\overrightarrow{MN}\]   đồng phẳng

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Gọi P, Q lần lượt là trung điểm AC, BD

\[\Rightarrow \] Ba  vec tơ \[\underrightarrow{\overrightarrow{AB}},\overrightarrow{DC},\overrightarrow{MN}\] có giá song song hoặc nằm trên mặt phẳng (MNPQ) nên 3 véc tơ này đồng phẳng  \[\Rightarrow \] A đúng

Ba  vec tơ \[\overrightarrow{\underrightarrow{AB}},\overrightarrow{AC},\overrightarrow{MN}\]không đồng phẳng \[\Rightarrow \] B đúng

Ba  vec tơ \[\overrightarrow{\underrightarrow{AN}},\overrightarrow{CM},\overrightarrow{MN}\] có giá không thể song song với mặt phẳng nào  \[\Rightarrow \] C sai

Chọn  C

[Ẩn HD]

Câu 20

Cho hình lập phương  \[ABCD.{{A}^{‘}}{{B}^{‘}}{{C}^{‘}}{{D}^{‘}}\], có cạnh a. Hãy tìm mệnh đề sai trong các mệnh đề sau:

[A].\[\overrightarrow{AD’}.\overrightarrow{CC’}=-{{a}^{2}}\]

[B].\[\overrightarrow{AD’}.\overrightarrow{AB’}={{a}^{2}}\]

[C]. \[\overrightarrow{AB’}.\overrightarrow{CD’}=0\]

[D].\[\left| \overrightarrow{AC} \right|=a\sqrt{3}\]

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Xết phương án A có: \[\overrightarrow{AD’}.\overrightarrow{CC’}=\overrightarrow{AD’}.\overrightarrow{\text{AA}’}=\left| \overrightarrow{AD’} \right|.\left| \overrightarrow{\text{AA}’} \right|\text{cos4}{{\text{5}}^{0}}={{a}^{2}}\]

Chọn A

[Ẩn HD]

Câu 21

Trong không gian cho hai tia Ax, By chéo nhau sao cho AB vuông góc với cả hai tia đó. Các điểm M, N lần lượt thay đổi trên Ax, By sao cho độ dài đoạn MN luôn bằng giá trị c không đổi (c\[\ge \] AB). Gọi \[\varphi \]  là góc giữa Ax, By. Giá trị lơn nhất của AM, BN

[A].\[\dfrac{{{c}^{2}}-A{{B}^{2}}}{2(1-c\text{os}\varphi \text{)}}\]

[B]. \[\dfrac{{{c}^{2}}-A{{B}^{2}}}{2(1+c\text{os}\varphi \text{)}}\]

[C]. \[\dfrac{{{c}^{2}}+A{{B}^{2}}}{2(1-c\text{os}\varphi \text{)}}\]

[D]. \[\dfrac{{{c}^{2}}+A{{B}^{2}}}{2(1+c\text{os}\varphi \text{)}}\]

Hướng dẫn

Véc tơ trong không gian, trắc nghiệm toán 11

Ta có:  \[{{c}^{2}}=M{{N}^{2}}={{\overrightarrow{MN}}^{2}}={{(\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN})}^{2}}\]

\[\ge A{{B}^{2}}+2AM.BN.(1-co\text{s}\varphi \text{)}\] \[\Rightarrow AM.BN.\le \dfrac{{{c}^{2}}-A{{B}^{2}}}{2(1-c\text{os}\varphi )}\]

Vậy biểu thức  AM.BN đạt giá trị lớn nhất bằng \[\dfrac{{{c}^{2}}-A{{B}^{2}}}{2(1-c\text{os}\varphi )}\]

Chọn  A

[Ẩn HD]

What do you think?

Comments

Leave a Reply

Your email address will not be published.

Loading…

0

Comments

0 comments

Đường thẳng song song với mặt phẳng, trắc nghiệm toán 11

Hai đường thẳng vuông góc, Góc giữa hai đường thẳng, trắc nghiệm toán 11