in

Tính bị chặn của dãy số, trắc nghiệm toán 11

Tính bị chặn của dãy số, trắc nghiệm toán 11

Câu 1

Cho dãy số \[\left( {{u}_{n}} \right)\], với \[{{u}_{n}}=\dfrac{3n-1}{3n+7}\]. Mệnh đề nào dưới đây là đúng ?

[A]. Dãy \[\left( {{u}_{n}} \right)\] bị chặn trên và không bị chặn dưới.

[B]. Dãy \[\left( {{u}_{n}} \right)\] bị chặn dưới và không bị chặn trên.

[C]. Dãy \[\left( {{u}_{n}} \right)\] bị chặn trên và bị chặn dưới.

[D]. Dãy \[\left( {{u}_{n}} \right)\] không bị chặn.

Hướng dẫn

Đáp án C.

Ta có \[{{u}_{n}}=1-\dfrac{8}{3n+7}<1-\dfrac{8}{3n+10}={{u}_{n+1}},\forall n\ge 1\] nên \[({{u}_{n}})\]là một dãy số tăng. Suy ra nó bị chặn dưới bởi \[{{u}_{1}}=\dfrac{1}{5}\]. Lại do \[{{u}_{n}}=1-\dfrac{8}{3n+7}<1,\forall n\ge 1\]nên dãy số \[{{u}_{n}}\] bị chặn trên bởi 1.

[Ẩn HD]

Câu 2

Trong các dãy số sau dãy số nào là dãy bị chặn ?

[A]. Dãy \[\left( {{a}_{n}} \right)\], với \[{{a}_{n}}=\sqrt{{{n}^{2}}+16},\forall n\in \mathbb{N}*\].

[B]. Dãy \[\left( {{b}_{n}} \right)\], với \[{{b}_{n}}=n+\dfrac{1}{2n},\forall n\in \mathbb{N}*\].

[C]. Dãy \[\left( {{c}_{n}} \right)\], với \[{{c}_{n}}={{2}^{n}}+3,\forall n\in \mathbb{N}*\].

[D]. Dãy \[\left( {{d}_{n}} \right)\], với \[{{d}_{n}}=\dfrac{n}{{{n}^{2}}+4},\forall n\in \mathbb{N}*\].

Hướng dẫn

Đáp án D.

  • Dãy số \[({{a}_{n}})\]là dãy số tăng và chỉ bị chặn dưới vì \[{{a}_{n}}=\sqrt{{{n}^{2}}+16}\ge \sqrt{17},\forall n\ge 1.\]
  • Dãy số \[({{b}_{n}})\]là dãy số tăng và chỉ bị chặn dưới vì \[{{b}_{n}}=n+\dfrac{1}{2n}>2\sqrt{n.\dfrac{1}{2n}}=\sqrt{2},\forall n\ge 1.\]
  • Dãy số \[({{c}_{n}})\]là dãy số tăng và chỉ bị chặn dưới vì \[{{c}_{n}}={{2}^{n}}+3\ge 5,\forall n\ge 1.\]
  • Dãy số \[({{d}_{n}})\]là dãy số bị chặn vì \[0<{{d}_{n}}\le \dfrac{1}{4},\forall n\ge 1.\] \[\left( do0<\dfrac{n}{{{n}^{2}}+4}\le \dfrac{n}{4n}=\dfrac{1}{4} \right).\]

[Ẩn HD]

Câu 3

Trong các dãy số dưới đây dãy số nào bị chặn trên ?

[A]. Dãy \[\left( {{a}_{n}} \right)\], với \[{{a}_{n}}=3n+1\].

[B]. Dãy \[\left( {{b}_{n}} \right)\], với \[{{b}_{n}}=\dfrac{1}{n\left( 2n+1 \right)}\].

[C]. Dãy \[\left( {{c}_{n}} \right)\], với \[{{c}_{n}}={{3.2}^{n+1}}\].

[D]. Dãy \[\left( {{d}_{n}} \right)\], với \[{{d}_{n}}={{\left( -2 \right)}^{n}}\].

Hướng dẫn

Đáp án B.






  • Dãy số \[({{a}_{n}})\]là dãy số tăng và chỉ bị chặn dưới vì \[{{u}_{1}}=4.\]
  • Dãy số \[({{b}_{n}})\]có $0<{{b}_{n}}<1,\forall n\ge 1$ nên dãy số \[({{b}_{n}})\]là dãy số bị chặn.
  • Dãy số \[({{c}_{n}})\]là dãy số tăng và chỉ bị chặn dưới bởi \[{{c}_{1}}=12.\]
  • Dãy số \[({{d}_{n}})\]là dãy đan dấu và \[{{d}_{2n}}={{(-2)}^{2n}}={{4}^{n}}\] lớn tùy ý khi \[n\] đủ lớn, còn \[{{d}_{2n+1}}={{(-2)}^{2n+1}}=-{{2.4}^{n}}\] nhỏ tùy ý khi \[n\] đủ lớn.

[Ẩn HD]

Câu 4

Trong các dãy số dưới đây, dãy số nào bị chặn dưới ?

[A]. Dãy \[\left( {{x}_{n}} \right)\], với \[{{x}_{n}}={{\left( -1 \right)}^{n}}.\left( {{n}^{2}}+2n+3 \right)\].

[B]. Dãy \[\left( {{y}_{n}} \right)\], với \[{{y}_{n}}=-\left( {{n}^{2}}+6n \right)\].

[C]. Dãy \[\left( {{z}_{n}} \right)\], với \[{{z}_{n}}=\dfrac{{{2018}^{n}}}{{{2017}^{n+1}}}\].

[D]. Dãy \[\left( {{w}_{n}} \right)\], với \[{{w}_{n}}={{\left( -2017 \right)}^{n}}\].

Hướng dẫn

Đáp án C.

  • Dãy số \[({{x}_{n}})\]là dãy đan dấu và \[{{x}_{2n}}\] lớn tùy ý khi \[n\] đủ lớn, \[{{x}_{2n+1}}\] nhỏ tùy ý khi \[n\] đủ lớn.
  • Dãy số \[({{y}_{n}})\]là dãy số giảm và \[{{y}_{n}}\]nhỏ tùy ý khi \[n\] đủ lớn.
  • Dãy số \[({{z}_{n}})\]là dãy số tăng nên nó bị chặn dưới bởi\[{{z}_{1}}=\dfrac{2018}{{{2017}^{2}}}.\]
  • Dãy số \[({{\text{w}}_{n}})\]là dãy đan dấu và \[{{\text{w}}_{2n}}\] lớn tùy ý khi \[n\] đủ lớn, \[{{\text{w}}_{2n+1}}\] nhỏ tùy ý khi \[n\] đủ lớn.

[Ẩn HD]

What do you think?

Comments

Leave a Reply

Your email address will not be published.

Loading…

0

Comments

0 comments

Tính tăng, giảm của dãy số, trắc nghiệm toán 11

Bài tập tính chất của dãy số, trắc nghiệm toán 11