in

Tính tăng, giảm của dãy số, trắc nghiệm toán 11

Tính tăng, giảm của dãy số, trắc nghiệm toán 11

Câu 1

Trong các dãy số dưới đây dãy số nào là dãy số tăng ?

[A]. Dãy \[\left( {{a}_{n}} \right)\], với \[{{a}_{n}}={{\left( -1 \right)}^{n+1}}.\sin \dfrac{\pi }{n},\forall n\in \mathbb{N}*\].

[B]. Dãy \[\left( {{b}_{n}} \right)\], với \[{{b}_{n}}={{\left( -1 \right)}^{2n}}.\left( {{5}^{n}}+1 \right),\forall n\in \mathbb{N}*\].

[C]. Dãy \[\left( {{c}_{n}} \right)\], với \[{{c}_{n}}=\dfrac{1}{n+\sqrt{n+1}},\forall n\in \mathbb{N}*\].

[D]. Dãy \[\left( {{d}_{n}} \right)\], với \[{{d}_{n}}=\dfrac{n}{{{n}^{2}}+1},\forall n\in \mathbb{N}*\].

Hướng dẫn

Đáp án B.

  • Dãy số \[({{a}_{n}})\]là dãy đan dấu nên không phải là dãy số tăng cũng không phải là dãy số giảm.
  • Với dãy \[({{b}_{n}})\], ta có \[{{b}_{n}}={{5}^{n}}+1\](do \[{{(-1)}^{2n}}=1).\] Vì \[{{b}_{n+1}}={{5}^{n+1}}+1={{5.5}^{n}}+1>{{b}_{n}},\forall n\ge 1\]nên \[({{b}_{n}})\]là một dãy số tăng.
  • Dãy số \[({{c}_{n}})\]là một dãy số giảm vì \[{{c}_{n+1}}=\dfrac{1}{n+1+\sqrt{n+2}}<\dfrac{1}{n+\sqrt{n+1}}={{c}_{n}},\forall n\ge 1.\]
  • Dãy số \[({{d}_{n}})\]là một dãy số giảm vì \[{{d}_{n+1}}=\dfrac{n+1}{{{n}^{2}}+2n+2}<\dfrac{n}{{{n}^{2}}+1}={{d}_{n}},\forall n\ge 1.\]

[Ẩn HD]

Câu 2

Trong các dãy số sau đây, dãy số nào là dãy số giảm ?

[A]. Dãy \[\left( {{a}_{n}} \right)\], với \[{{a}_{n}}={{\left( -\dfrac{1}{2} \right)}^{n}}\]

[B]. Dãy \[\left( {{b}_{n}} \right)\] với \[{{b}_{n}}=\dfrac{{{n}^{2}}+1}{n}\].

[C]. Dãy \[\left( {{c}_{n}} \right)\], với \[{{c}_{n}}=\dfrac{1}{{{n}^{3}}+1}\].

[D]. Dãy \[\left( {{d}_{n}} \right)\], với \[{{d}_{n}}={{3.2}^{n}}\].

Hướng dẫn

Đáp án C.

  • Dãy số \[({{a}_{n}})\]là dãy đan dấu nên không phải là dãy số tăng cũng không phải là dãy số giảm.
  • Dãy số \[({{b}_{n}})\]là một dãy số tăng vì \[{{b}_{n}}=n+\dfrac{1}{n}<n+1+\dfrac{1}{n+1}={{b}_{n+1}},\forall n\ge 1.\]
  • Dãy số \[({{c}_{n}})\]là một dãy số giảm vì \[{{c}_{n}}=\dfrac{1}{{{n}^{3}}+1}>\dfrac{1}{{{(n+1)}^{3}}+1}={{c}_{n+1}},\forall n\ge 1.\]
  • Dãy số \[({{d}_{n}})\]là một dãy số tăng vì \[{{d}_{n}}={{3.2}^{n}}<{{3.2}^{n+1}}={{d}_{n+1}},\forall n\ge 1.\]

[Ẩn HD]

Câu 3

Cho dãy số \[\left( {{x}_{n}} \right)\] với \[{{x}_{n}}=\dfrac{an+4}{n+2}\]. Dãy số \[\left( {{x}_{n}} \right)\] là dãy số tăng khi:

[A]. \[a=2\].

[B]. \[a>2\].

[C]. \[a<2\].

[D]. \[a>1\].

Hướng dẫn

Đáp án B.

Ta có \[{{x}_{n+1}}=\dfrac{a(n+1)+4}{n+3}.\] Xét hiệu \[{{x}_{n+1}}-{{x}_{n}}=\dfrac{a(n+1)+4}{n+3}-\dfrac{an+4}{n+2}=\dfrac{2a-4}{(n+2)(n+3)}.\]






\[({{x}_{n}})\]là dãy tăng khi và chỉ khi \[{{x}_{n+1}}-{{x}_{n}}>0,\forall n\ge 1\Leftrightarrow 2a-4>0\Leftrightarrow a>2.\]

[Ẩn HD]

Câu 4

Cho hai dãy số \[\left( {{x}_{n}} \right)\] với \[{{x}_{n}}=\dfrac{\left( n+1 \right)!}{{{2}^{n}}}\] và \[\left( {{y}_{n}} \right)\] với \[{{y}_{n}}=n+{{\sin }^{2}}\left( n+1 \right)\]. Mệnh đề nào dưới đây là đúng ?

[A]. \[\left( {{x}_{n}} \right)\] là dãy số giảm, \[\left( {{y}_{n}} \right)\] là dãy số giảm.

[B]. \[\left( {{x}_{n}} \right)\] là dãy số giảm, \[\left( {{y}_{n}} \right)\] là dãy số tăng.

[C]. \[\left( {{x}_{n}} \right)\] là dãy số tăng, \[\left( {{y}_{n}} \right)\] là dãy số giảm.

[D]. \[\left( {{x}_{n}} \right)\] là dãy số tăng, là dãy số tăng.

Hướng dẫn

Đáp án D.

Ta có \[{{x}_{n}}>0,\forall n\ge 1\] và \[\dfrac{{{x}_{n+1}}}{{{x}_{n}}}=\dfrac{n+2}{2}>1,\forall n\ge 1\]nên \[({{x}_{n}})\]là dãy số tăng.

Ta có \[{{y}_{n+1}}-{{y}_{n}}={{\sin }^{2}}(n+1)+1-{{\sin }^{2}}n>0,\forall n\ge 1\] nên \[({{y}_{n}})\]cũng là dãy số tăng.

[Ẩn HD]

What do you think?

Comments

Leave a Reply

Your email address will not be published.

Loading…

0

Comments

0 comments

Phương pháp chứng minh quy nạp toán học, trắc nghiệm toán 11

Tính bị chặn của dãy số, trắc nghiệm toán 11