1. Khái niệm dãy số

Dãy số, toán lớp 11

a) Định nghĩa

– Hàm số \(u\) xác định trên tập hợp các số nguyên dương \({N^*}\) được gọi là một dãy số. (dãy số vô hạn).

– Dãy số xác định trên tập hợp gồm \(m\) số nguyên dương đầu tiên ta cũng gọi là dãy số (dãy số hữu hạn).

Các số hạng trong dãy: \({u_1} = u\left( 1 \right),{u_2} = u\left( 2 \right),…,{u_n} = u\left( n \right),…\)

Kí hiệu: Người ta thường kí hiệu dãy số \(u = u\left( n \right)\) bởi \(\left( {{u_n}} \right)\) và gọi \({u_n}\) là số hạng tổng quát của dãy số đó.

b) Các cách cho một dãy số

– Cách 1: Cho dãy số bởi công thức của số hạng tổng quát.

Ví dụ: Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \dfrac{1}{{n + 2}}\).

– Cách 2: Cho dãy số bởi hệ thức truy hồi (hay còn nói Cho dãy số bằng quy nạp).

Ví dụ: Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 2.{u_{n – 1}}\).

c) Dãy số tăng, dãy số giảm

Định nghĩa:

– Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số tăng nếu ta có \({u_{n + 1}} > {u_n}\) với mọi \(n \in {\mathbb{N}^*}\)

– Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số giảm nếu ta có \({u_{n + 1}} < {u_n}\) với mọi \(n \in {\mathbb{N}^*}\)

Không phải mọi dãy số đều chỉ tăng hoặc giảm.

Có những dãy số không tăng cũng không giảm như \({u_n} = {\left( { – 3} \right)^n}\) tức là \( – 3;9; – 27;81;…\)

d) Dãy số bị chặn

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại một số \(M\) sao cho

\({u_n} \le M,\forall n \in {N^*}\)

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới nếu tồn tại một số \(m\) sao cho

\({u_n} \ge m,\forall n \in {N^*}\)

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số \(M,m\) sao cho

\(m \le {u_n} \le M,\forall n \in {N^*}\)

2. Một số dạng toán thường gặp

Dạng 1: Tìm số hạng của dãy số.

Phương pháp:

Sử dụng công thức tổng quát hoặc công thức truy hồi để tìm số hạng của dãy.

Dạng 2: Tìm số hạng tổng quát của dãy số.

Phương pháp:

– Bước 1: Liệt kê các số hạng của dãy số và dự đoán công thức tổng quát.

– Bước 2: Chứng minh công thức bằng phương pháp quy nạp toán học.

Dạng 3: Xét tính tăng, giảm, bị chặn của dãy số.

Sử dụng định nghĩa dãy số tăng, giảm, bị chặn của dãy số để xét.