Dạng bài tính tổng trong khai triển nhị thức Newton, Đại số giải tích 11

Câu 1: Tổng $T=~\,\,C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+C_{n}^{3}+…+C_{n}^{n}$ bằng:

[A]. $T\text{ }=\text{ }{{2}^{n}}$.

[B]. $T\text{ }=\text{ }{{2}^{n}}\text{ }1$.

[C]. $T\text{ }=\text{ }{{2}^{n}}+\text{ }1$.

[D]. $T\text{ }=\text{ }{{4}^{n}}$.

Hướng dẫn

Chọn A

Tính chất của khai triển nhị thức Niu – Tơn.





[Ẩn HD]

Câu 2: Tính giá trị của tổng $S\text{ }=\,\,C_{6}^{0}+C_{6}^{1}+..+C_{6}^{6}$ bằng:

[A]. 64.

[B]. 48.

[C]. 72.

[D]. 100.

Hướng dẫn

Chọn A






$\text{S =}\,\,\text{C}_{\text{6}}^{\text{0}}\text{+C}_{\text{6}}^{\text{1}}\text{+}…\text{+C}_{\text{6}}^{\text{6}}={{2}^{6}}=64$

[Ẩn HD]

Câu 3: Khai triển ${{\left( x+y \right)}^{5}}$rồi thay $x,y$ bởi các giá trị thích hợp. Tính tổng $S=\,\,C_{5}^{0}+C_{5}^{1}+…+C_{5}^{5}$

[A]. 32.

[B]. 64.

[C]. 1.

[D]. 12.

Hướng dẫn

Chọn A

Với $x=1,y=1$ ta có $\text{S=}\,\,\text{C}_{\text{5}}^{\text{0}}\text{+C}_{\text{5}}^{\text{1}}\text{+}…\text{+C}_{\text{5}}^{\text{5}}={{(1+1)}^{5}}=32$.

[Ẩn HD]

Câu 4: Tìm số nguyên dương n sao cho: $C_{n}^{0}+2C_{n}^{1}+4C_{n}^{2}+…+{{2}^{n}}C_{n}^{n}=243$

[A]. 4

[B]. 11

[C]. 12

[D]. 5

Hướng dẫn

Chọn D

Xét khai triển: ${{(1+x)}^{n}}=C_{n}^{0}+xC_{n}^{1}+{{x}^{2}}C_{n}^{2}+…+{{x}^{n}}C_{n}^{n}$

Cho $x=2$ ta có: $C_{n}^{0}+2C_{n}^{1}+4C_{n}^{2}+…+{{2}^{n}}C_{n}^{n}={{3}^{n}}$

Do vậy ta suy ra ${{3}^{n}}=243={{3}^{5}}\Rightarrow n=5$.

[Ẩn HD]

Câu 5: Khai triển ${{\left( x+y \right)}^{5}}$rồi thay $x,y$ bởi các giá trị thích hợp. Tính tổng $S=\,\,C_{5}^{0}+C_{5}^{1}+…+C_{5}^{5}$

[A]. 32.

[B]. 64.

[C]. 1.

[D]. 12.

Hướng dẫn

Chọn A

Với $x=1,y=1$ ta có $\text{S=}\,\,\text{C}_{\text{5}}^{\text{0}}\text{+C}_{\text{5}}^{\text{1}}\text{+}…\text{+C}_{\text{5}}^{\text{5}}={{(1+1)}^{5}}=32$.

[Ẩn HD]

Câu 6: Khai triển ${{\left( 1+x+{{x}^{2}}+{{x}^{3}} \right)}^{5}}={{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+…+{{a}_{15}}{{x}^{15}}$

a) Hãy tính hệ số ${{a}_{10}}$.

[A]. ${{a}_{10}}=C_{5}^{0}.+C_{5}^{4}+C_{5}^{4}C_{5}^{3}$

[B]. ${{a}_{10}}=C_{5}^{0}.C_{5}^{5}+C_{5}^{2}C_{5}^{4}+C_{5}^{4}C_{5}^{3}$

[C]. ${{a}_{10}}=C_{5}^{0}.C_{5}^{5}+C_{5}^{2}C_{5}^{4}-C_{5}^{4}C_{5}^{3}$

[D]. ${{a}_{10}}=C_{5}^{0}.C_{5}^{5}-C_{5}^{2}C_{5}^{4}+C_{5}^{4}C_{5}^{3}$

b) Tính tổng $T={{a}_{0}}+{{a}_{1}}+…+{{a}_{15}}$ và $S={{a}_{0}}-{{a}_{1}}+{{a}_{2}}-…-{{a}_{15}}$

[A]. 131

[B]. 147614

[C]. 0

[D]. 1

Hướng dẫn

Đặt $f(x)={{(1+x+{{x}^{2}}+{{x}^{3}})}^{5}}={{(1+x)}^{5}}{{(1+{{x}^{2}})}^{5}}$

a) Do đó hệ số ${{x}^{10}}$bằng: ${{a}_{10}}=C_{5}^{0}.C_{5}^{5}+C_{5}^{2}C_{5}^{4}+C_{5}^{4}C_{5}^{3}$

b) $T=f(1)={{4}^{5}}$; $S=f(-1)=0$

[Ẩn HD]

Câu 7: Khai triển ${{\left( 1+2x+3{{x}^{2}} \right)}^{10}}={{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+…+{{a}_{20}}{{x}^{20}}$

a) Hãy tính hệ số ${{a}_{4}}$

[A]. ${{a}_{4}}=C_{10}^{0}{{.2}^{4}}$

[B]. ${{a}_{4}}={{2}^{4}}C_{10}^{4}$

[C]. ${{a}_{4}}=C_{10}^{0}C_{10}^{4}$

[D]. ${{a}_{4}}=C_{10}^{0}{{.2}^{4}}C_{10}^{4}$

b) Tính tổng $S={{a}_{1}}+2{{a}_{2}}+4{{a}_{3}}+…+{{2}^{20}}{{a}_{20}}$

[A]. $S={{17}^{10}}$

[B]. $S={{15}^{10}}$

[C]. $S={{17}^{20}}$

[D]. $S={{7}^{10}}$

Hướng dẫn

Đặt $f(x)={{(1+2x+3{{x}^{2}})}^{10}}=\sum\limits_{k=0}^{10}{C_{10}^{k}{{3}^{k}}{{x}^{2k}}{{(1+2x)}^{10-k}}}$

$=\sum\limits_{k=0}^{10}{C_{10}^{k}{{3}^{k}}{{x}^{2k}}\sum\limits_{i=0}^{10-k}{C_{10-k}^{i}{{2}^{10-k-i}}{{x}^{10-k-i}}}}$

$=\sum\limits_{k=0}^{10}{\sum\limits_{i=0}^{10-k}{C_{10}^{k}C_{10-k}^{i}{{3}^{k}}{{2}^{10-k-i}}{{x}^{10+k-i}}}}$

a) Ta có: ${{a}_{4}}=C_{10}^{0}{{.2}^{4}}C_{10}^{4}+$

b) Ta có $S=f(2)={{17}^{10}}$

[Ẩn HD]

Câu 8: Tính tổng sau: $S=\dfrac{1}{2}C_{n}^{0}-\dfrac{1}{4}C_{n}^{1}+\dfrac{1}{6}C_{n}^{3}-\dfrac{1}{8}C_{n}^{4}+…+\dfrac{{{(-1)}^{n}}}{2(n+1)}C_{n}^{n}$

[A]. $\dfrac{1}{2(n+1)}$

[B]. 1

[C]. 2

[D]. $\dfrac{1}{(n+1)}$

Hướng dẫn

Chọn A

Ta có: $S=\dfrac{1}{2}\left( C_{n}^{0}-\dfrac{1}{2}C_{n}^{1}+\dfrac{1}{3}C_{n}^{2}-…+\dfrac{{{(-1)}^{n}}}{n+1}C_{n}^{n} \right)$

Vì $\dfrac{{{(-1)}^{k}}}{k+1}C_{n}^{k}=\dfrac{{{(-1)}^{k}}}{n+1}C_{n+1}^{k+1}$ nên:$S=\dfrac{1}{2(n+1)}\sum\limits_{k=0}^{n}{{{(-1)}^{k}}C_{n+1}^{k+1}}$

$=\dfrac{-1}{2(n+1)}\left( \sum\limits_{k=0}^{n+1}{{{(-1)}^{k}}C_{n+1}^{k}}-C_{n+1}^{0} \right)=\dfrac{1}{2(n+1)}$.

[Ẩn HD]

Câu 9: Tính tổng sau: $S=C_{n}^{1}{{3}^{n-1}}+2C_{n}^{2}{{3}^{n-2}}+3C_{n}^{3}{{3}^{n-3}}+…+nC_{n}^{n}$

[A]. $n{{.4}^{n-1}}$

[B]. 0

[C]. 1

[D]. ${{4}^{n-1}}$

Hướng dẫn

Chọn A

Ta có: $S={{3}^{n}}\sum\limits_{k=1}^{n}{kC_{n}^{k}{{\left( \dfrac{1}{3} \right)}^{k}}}$

Vì $kC_{n}^{k}{{\left( \dfrac{1}{3} \right)}^{k}}=n{{\left( \dfrac{1}{3} \right)}^{k}}C_{n-1}^{k-1}$ $\forall k\ge 1$nên

$S={{3}^{n}}.n\sum\limits_{k=1}^{n}{{{\left( \dfrac{1}{3} \right)}^{k}}C_{n-1}^{k-1}}={{3}^{n-1}}.n\sum\limits_{k=0}^{n-1}{{{\left( \dfrac{1}{3} \right)}^{k}}C_{n-1}^{k}}$$={{3}^{n-1}}.n{{(1+\dfrac{1}{3})}^{n-1}}=n{{.4}^{n-1}}$.

[Ẩn HD]

Câu 10: Tính các tổng sau: ${{S}_{1}}=C_{n}^{0}+\dfrac{1}{2}C_{n}^{1}+\dfrac{1}{3}C_{n}^{2}+…+\dfrac{1}{n+1}C_{n}^{n}$

[A]. $\dfrac{{{2}^{n+1}}+1}{n+1}$

[B]. $\dfrac{{{2}^{n+1}}-1}{n+1}$

[C]. $\dfrac{{{2}^{n+1}}-1}{n+1}+1$

[D]. $\dfrac{{{2}^{n+1}}-1}{n+1}-1$

Hướng dẫn

Chọn B

Ta có:

$\dfrac{1}{k+1}C_{n}^{k}=\dfrac{1}{k+1}\dfrac{n!}{k!(n-k)!}=\dfrac{1}{n+1}\dfrac{(n+1)!}{(k+1)!\text{ }\!\![\!\!\text{ (}n+1)-(k+1))!}$

$=\dfrac{1}{n+1}C_{n+1}^{k+1}$ (*)

$\Rightarrow {{S}_{1}}=\dfrac{1}{n+1}\sum\limits_{k=0}^{n}{C_{n+1}^{k+1}}=\dfrac{1}{n+1}\left( \sum\limits_{k=0}^{n+1}{C_{n+1}^{k}}-C_{n+1}^{0} \right)=\dfrac{{{2}^{n+1}}-1}{n+1}$.

[Ẩn HD]

Câu 11: Tính các tổng sau:${{S}_{2}}=C_{n}^{1}+2C_{n}^{2}+…+nC_{n}^{n}$

[A]. $2n{{.2}^{n-1}}$

[B]. $n{{.2}^{n+1}}$

[C]. $2n{{.2}^{n+1}}$

[D]. $n{{.2}^{n-1}}$

Hướng dẫn

Chọn D

Ta có: $kC_{n}^{k}=k.\dfrac{n!}{k!(n-k)!}=\dfrac{n!}{(k-1)!\text{ }\!\![\!\!\text{ }(n-1)-(k-1)\text{ }\!\!]\!\!\text{ }!}$

$=n\dfrac{(n-1)!}{(k-1)!\text{ }\!\![\!\!\text{ }(n-1)-(k-1)\text{ }\!\!]\!\!\text{ }!}=nC_{n-1}^{k-1}$, $\forall k\ge 1$

$\Rightarrow {{S}_{2}}=\sum\limits_{k=1}^{n}{nC_{n-1}^{k-1}}=n\sum\limits_{k=0}^{n-1}{C_{n-1}^{k}}=n{{.2}^{n-1}}$.

[Ẩn HD]

Câu 12: Tính các tổng sau:${{S}_{3}}=2.1.C_{n}^{2}+3.2C_{n}^{3}+4.3C_{n}^{4}+…+n(n-1)C_{n}^{n}$.

[A]. $n(n-1){{2}^{n-2}}$

[B]. $n(n+2){{2}^{n-2}}$

[C]. $n(n-1){{2}^{n-3}}$

[D]. $n(n-1){{2}^{n+2}}$

Hướng dẫn

Chọn A

Ta có $k(k-1)C_{n}^{k}=\dfrac{n!}{(k-2)!(n-k)!}=n(n-1)C_{n-2}^{k-2}$

$\Rightarrow {{S}_{3}}=n(n-1)\sum\limits_{k=2}^{n}{C_{n-2}^{k-2}}=n(n-1){{2}^{n-2}}$.

[Ẩn HD]

Câu 13: Tính tổng $S=C_{n}^{0}+\dfrac{{{3}^{2}}-1}{2}C_{n}^{1}+…+\dfrac{{{3}^{n+1}}-1}{n+1}C_{n}^{n}$

[A]. $S=\dfrac{{{4}^{n+1}}-{{2}^{n+1}}}{n+1}$

[B]. $S=\dfrac{{{4}^{n+1}}+{{2}^{n+1}}}{n+1}-1$

 

[C]. $S=\dfrac{{{4}^{n+1}}-{{2}^{n+1}}}{n+1}+1$

[D]. $S=\dfrac{{{4}^{n+1}}-{{2}^{n+1}}}{n+1}-1$

Hướng dẫn

Chọn D

Ta có $S={{S}_{1}}-{{S}_{2}}$, trong đó
${{S}_{1}}=C_{n}^{0}+\dfrac{{{3}^{2}}}{2}C_{n}^{1}+\dfrac{{{3}^{3}}}{3}C_{n}^{2}+…+\dfrac{{{3}^{n+1}}}{n+1}C_{n}^{n}$

${{S}_{2}}=\dfrac{1}{2}C_{n}^{1}+\dfrac{1}{3}C_{n}^{2}+…+\dfrac{1}{n+1}C_{n}^{n}$

Ta có ${{S}_{2}}=\dfrac{{{2}^{n+1}}-1}{n+1}-1$

Tính ${{S}_{1}}=?$

Ta có: $\dfrac{{{3}^{k+1}}}{k+1}C_{n}^{k}={{3}^{k+1}}\dfrac{n!}{(k+1)!(n-k)!}$ $=\dfrac{{{3}^{k+1}}}{n+1}\dfrac{(n+1)!}{(k+1)!\text{ }\!\![\!\!\text{ }(n+1)-(k+1)\text{ }\!\!]\!\!\text{ !}}$$=\dfrac{{{3}^{k+1}}}{n+1}C_{n+1}^{k+1}$

$\Rightarrow {{S}_{1}}=\dfrac{1}{n+1}\sum\limits_{k=0}^{n}{{{3}^{k+1}}C_{n+2}^{k+1}}-2C_{n}^{0}$$=\dfrac{1}{n+1}\left( \sum\limits_{k=0}^{n+1}{{{3}^{k}}C_{n+1}^{k}}-C_{n}^{0} \right)-2C_{n}^{0}$$=\dfrac{{{4}^{n+1}}-1}{n+1}-2$.

Vậy $S=\dfrac{{{4}^{n+1}}-{{2}^{n+1}}}{n+1}-1$.

[Ẩn HD]

Câu 14: Tính tổng $S=C_{n}^{0}+\dfrac{{{2}^{2}}-1}{2}C_{n}^{1}+…+\dfrac{{{2}^{n+1}}-1}{n+1}C_{n}^{n}$

[A]. $S=\dfrac{{{3}^{n+1}}-{{2}^{n+1}}}{n+1}$

[B]. $S=\dfrac{{{3}^{n}}-{{2}^{n+1}}}{n+1}$

[C]. $S=\dfrac{{{3}^{n+1}}-{{2}^{n}}}{n+1}$

[D]. $S=\dfrac{{{3}^{n+1}}+{{2}^{n+1}}}{n+1}$

Hướng dẫn

Chọn A

Ta có: $S={{S}_{1}}-{{S}_{2}}$

Trong đó ${{S}_{1}}=\sum\limits_{k=0}^{n}{C_{n}^{k}\dfrac{{{2}^{k+1}}}{k+1}};\text{ }{{S}_{2}}=\sum\limits_{k=0}^{n}{\dfrac{C_{n}^{k}}{k+1}}=\dfrac{{{2}^{n+1}}-1}{n+1}-1$

Mà $\dfrac{{{2}^{k+1}}}{k+1}C_{n}^{k}=\dfrac{{{2}^{k+1}}}{n+1}C_{n+1}^{k+1}$$\Rightarrow {{S}_{1}}=\dfrac{{{3}^{n+1}}-1}{n+1}-1$

Suy ra: $S=\dfrac{{{3}^{n+1}}-{{2}^{n+1}}}{n+1}$.

[Ẩn HD]

Câu 15: Tìm số nguyên dương n sao cho : $C_{2n+1}^{1}-2.2C_{2n+1}^{2}+{{3.2}^{2}}C_{2n+1}^{3}-…+(2n+1){{2}^{n}}C_{2n+1}^{2n+1}=2005$

[A]. n=1001

[B]. n=1002

[C]. n=1114

[D]. n=102

Hướng dẫn

Chọn B

Đặt $S=\sum\limits_{k=1}^{2n+1}{{{(-1)}^{k-1}}.k{{.2}^{k-1}}C_{2n+1}^{k}}$

Ta có: ${{(-1)}^{k-1}}.k{{.2}^{k-1}}C_{2n+1}^{k}=={{(-1)}^{k-1}}.(2n+1){{.2}^{k-1}}C_{2n}^{k-1}$

Nên $S=(2n+1)(C_{2n}^{0}-2C_{2n}^{1}+{{2}^{2}}C_{2n}^{2}-…+{{2}^{2n}}C_{2n}^{2n})=2n+1$

Vậy $2n+1=2005\Leftrightarrow n=1002$.

[Ẩn HD]

Câu 16: Tính tổng${{1.3}^{0}}{{.5}^{n-1}}C_{n}^{n-1}+{{2.3}^{1}}{{.5}^{n-2}}C_{n}^{n-2}+…+n{{.3}^{n-1}}{{5}^{0}}C_{n}^{0}$

[A]. $n{{.8}^{n-1}}$

[B]. $(n+1){{.8}^{n-1}}$C.$(n-1){{.8}^{n}}$

[D]. $n{{.8}^{n}}$

Hướng dẫn

Chọn A

Ta có: $VT=\sum\limits_{k=1}^{n}{k{{.3}^{k-1}}{{.5}^{n-k}}C_{n}^{n-k}}$

Mà $k{{.3}^{k-1}}{{.5}^{n-k}}C_{n}^{n-k}=n{{.3}^{k-1}}{{.5}^{n-k}}.C_{n-1}^{k-1}$

Suy ra: $VT=n({{3}^{0}}{{.5}^{n-1}}C_{n-1}^{0}+{{3}^{1}}{{.5}^{n-2}}C_{n-1}^{1}+…+{{3}^{n-1}}{{5}^{0}}C_{n-1}^{n-1})$

$=n{{(5+3)}^{n-1}}=n{{.8}^{n-1}}$

[Ẩn HD]

Câu 17: Tính tổng $S=2.1C_{n}^{2}+3.2C_{n}^{3}+4.3C_{n}^{4}+…+n(n-1)C_{n}^{n}$

[A]. $n(n+1){{2}^{n-2}}$

[B]. $n(n-1){{2}^{n-2}}$

[C]. $n(n-1){{2}^{n}}$

[D]. $(n-1){{2}^{n-2}}$

Hướng dẫn

Chọn B

Ta có: $S=\sum\limits_{k=2}^{n}{k(k-1)C_{n}^{k}}$

Mà $k(k-1)C_{n}^{k}=n(n-1)C_{n-2}^{k-2}$

Suy ra $S=n(n-1)(C_{n-2}^{0}+C_{n-2}^{1}+C_{n-2}^{2}+…+C_{n-2}^{n-2})=n(n-1){{2}^{n-2}}$

[Ẩn HD]

Câu 18: Tính tổng ${{\left( C_{n}^{0} \right)}^{2}}+{{\left( C_{n}^{1} \right)}^{2}}+{{\left( C_{n}^{2} \right)}^{2}}+…+{{\left( C_{n}^{n} \right)}^{2}}$

[A]. $C_{2n}^{n}$

[B]. $C_{2n}^{n-1}$

[C]. $2C_{2n}^{n}$

[D]. $C_{2n-1}^{n-1}$

Hướng dẫn

Chọn A

Ta có:${{\left( x+1 \right)}^{n}}{{\left( 1+x \right)}^{n}}={{\left( x+1 \right)}^{2n}}$.

Vế trái của hệ thức trên chính là:

$\left( C_{n}^{0}{{x}^{n}}+C_{n}^{1}{{x}^{n-1}}+…+C_{n}^{n} \right)\left( C_{n}^{0}+C_{n}^{1}x+…+C_{n}^{n}{{x}^{n}} \right)$

Và ta thấy hệ số của ${{x}^{n}}$ trong vế trái là

${{\left( C_{n}^{0} \right)}^{2}}+{{\left( C_{n}^{1} \right)}^{2}}+{{\left( C_{n}^{2} \right)}^{2}}+…+{{\left( C_{n}^{n} \right)}^{2}}$

Còn hệ số của ${{x}^{n}}$ trong vế phải ${{\left( x+1 \right)}^{2n}}$ là $C_{2n}^{n}$

Do đó ${{\left( C_{n}^{0} \right)}^{2}}+{{\left( C_{n}^{1} \right)}^{2}}+{{\left( C_{n}^{2} \right)}^{2}}+…+{{\left( C_{n}^{n} \right)}^{2}}=C_{2n}^{n}$

[Ẩn HD]

Câu 19: Tính tổng sau: ${{S}_{1}}={{5}^{n}}C_{n}^{0}+{{5}^{n-1}}.3.C_{n}^{n-1}+{{3}^{2}}{{.5}^{n-2}}C_{n}^{n-2}+…+{{3}^{n}}C_{n}^{0}$

[A]. ${{28}^{n}}$

[B]. $1+{{8}^{n}}$

[C]. ${{8}^{n-1}}$

[D]. ${{8}^{n}}$

Hướng dẫn

Chọn D

Ta có: ${{S}_{1}}={{(5+3)}^{n}}={{8}^{n}}$

[Ẩn HD]

Câu 20: ${{S}_{2}}=C_{2011}^{0}+{{2}^{2}}C_{2011}^{2}+…+{{2}^{2010}}C_{2011}^{2010}$

[A]. $\dfrac{{{3}^{2011}}+1}{2}$

[B]. $\dfrac{{{3}^{211}}-1}{2}$

[C]. $\dfrac{{{3}^{2011}}+12}{2}$

[D]. $\dfrac{{{3}^{2011}}-1}{2}$

Hướng dẫn

Chọn D

Xét khai triển:

${{(1+x)}^{2011}}=C_{2011}^{0}+xC_{2011}^{1}+{{x}^{2}}C_{2011}^{2}+…+{{x}^{2010}}C_{2011}^{2010}+{{x}^{2011}}C_{2011}^{2011}$

Cho $x=2$ ta có được:

${{3}^{2011}}=C_{2011}^{0}+2.C_{2011}^{1}+{{2}^{2}}C_{2011}^{2}+…+{{2}^{2010}}C_{2011}^{2010}+{{2}^{2011}}C_{2011}^{2011}$ (1)

Cho $x=-2$ ta có được:

$-1=C_{2011}^{0}-2.C_{2011}^{1}+{{2}^{2}}C_{2011}^{2}-…+{{2}^{2010}}C_{2011}^{2010}-{{2}^{2011}}C_{2011}^{2011}$ (2)

Lấy (1) + (2) ta có:

$2\left( C_{2011}^{0}+{{2}^{2}}C_{2011}^{2}+…+{{2}^{2010}}C_{2011}^{2010} \right)={{3}^{2011}}-1$

Suy ra:${{S}_{2}}=C_{2011}^{0}+{{2}^{2}}C_{2011}^{2}+…+{{2}^{2010}}C_{2011}^{2010}=\dfrac{{{3}^{2011}}-1}{2}$.

[Ẩn HD]

Câu 21: Tính tổng ${{S}_{3}}=C_{n}^{1}+2C_{n}^{2}+…+nC_{n}^{n}$

[A]. $4n{{.2}^{n-1}}$

[B]. $n{{.2}^{n-1}}$

[C]. $3n{{.2}^{n-1}}$

[D]. $2n{{.2}^{n-1}}$

Hướng dẫn

Chọn B

Ta có: $kC_{n}^{k}=k.\dfrac{n!}{k!(n-k)!}=\dfrac{n!}{(k-1)!\text{ }\!\![\!\!\text{ }(n-1)-(k-1)\text{ }\!\!]\!\!\text{ }!}$
$=n\dfrac{(n-1)!}{(k-1)!\text{ }\!\![\!\!\text{ }(n-1)-(k-1)\text{ }\!\!]\!\!\text{ }!}=nC_{n-1}^{k-1}$, $\forall k\ge 1$

$\Rightarrow {{S}_{3}}=\sum\limits_{k=1}^{n}{nC_{n-1}^{k-1}}=n\sum\limits_{k=0}^{n-1}{C_{n-1}^{k}}=n{{.2}^{n-1}}$.

[Ẩn HD]
Cảm xúc của bạn
Dạng bài tính tổng trong khai triển nhị thức Newton, Đại số giải tích 11
Dạng bài tính tổng trong khai triển nhị thức Newton, Đại số giải tích 11
Dạng bài tính tổng trong khai triển nhị thức Newton, Đại số giải tích 11
Dạng bài tính tổng trong khai triển nhị thức Newton, Đại số giải tích 11
Dạng bài tính tổng trong khai triển nhị thức Newton, Đại số giải tích 11
Bạn đã để lại cảm xúc
Thật tuyệt vời♥!Đừng quên chia sẻ bài viết nhé ♥